martes, 6 de diciembre de 2011

Teorema de Binomio

28/noviembre/2011

Ejemplos:

(a+b)2 = (a+b) (a+b)
           = a2 + ab + ba + b2
              a2 + 2ab + b2

(a+b)3 = [(a+b) (a+b)] (a+b)
           = (a2 + 2ab + b2) (a+b)
           = a3 + a2b+ 2a2b + b2a + b3
           = a3 + 3a2b + 3ab2 + b3


(a+b)4= a4 + 4a3b + 6a2b2 + 4ab3 + b4

1.

(x+2)3
= x3 + 3x2(2) +3(x)(2^2) + 2^3
= x3 + 6x2 +12x + 8

2.

(2x+3) (2x+3) [(2x+3)]
4x2 + 6x + 6x + 9 + [(2x + 3)]
= 2x3 + 3(2x)2 (3) +3(2x) (3^2) + (3)^3
= 8x3 + 36x2 + 54x + 27


















Teorema de Binomio



Comsidere los siguientes desarollos de potencias (a + b)  elevado a la n (n es igual a, exponente) donde a + b es cualquier binomio.

                                         (a+b)0          1
                                     (a+b)1       1            1
                                (a+b)2       1          2             1
                           (a+b)3      1         3            3             1
                    (a+b) 4      1         4           6            4            1
                 (a+b)5      1        5        10          10          5           1